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and those of other researchers which complement the factorizations of n4 + 1 
published by Cunningham. 
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On the Generation of All Possible Stepwise 
Combinations 

By Gary Lotto 

Conventionally, when all possible combinations of all possible subset sizes from 
a set of n are desired, a binary count is performed. Associating the units digit with 
the number 1, the two's digit with the number 2, the four's digit with the number 
3, etc., the binary count 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, etc., be- 
comes associated with the combinations 1, 2, 12, 3, 13, 23, 123, 4, etc. This is useful 
in such procedures as the analysis of variance. 

The above order of combinations requires that, when computing on data from 
one combination to the next, either (a) the calculation starts anew, or (b) if algo- 
rithms exist for generating a new function from the old one by single steps of either 
including or deleting a number from the combination, more than one step may be 
required. For example, we may go from the combination "2" to the combination 
"12" by "including 1." But going from "12" to "3" requires "deleting 1, deleting 2, 
and including 3." 

Given, then, that a problem may be solved for some combination of k elements 
from the solution for the superset of (k + 1) elements or the subset of (k - 1) 
elements, is there an algorithm for generating all possible combinations which goes 
through the fewest recursions? 
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TABLE 1 

i ~~~~~A (i) B(i) C(i) 

1 00001 +1 1 

2 00010 +2 1 2 
3 00011 -1 2 

4 00100 +3 2 3 
5 00101 +1 1 2 3 
6 00110 -2 1 3 
7 00111 -1 3 

8 01000 +4 3 4 
9 01001 +1 1 3 4 

10 01010 +2 1 2 3 4 
11 01011 -1 2 3 4 
12 01100 -3 2 4 
13 01101 +1 1 2 4 
14 01110 -2 1 4 
15 01111 -1 4 

16 10000 +5 4 5 

The author has used the following algorithm to generate all combinations of in- 
dependent variables in a multiple regression problem: 

(1) For each step, carry the cycle number i of the combination which is to be 
generated. 

(2) Divide i by 2, then the quotient by 2, etc., until the remainder is not 0. The 
number of divisions performed is k, the number to be included or deleted. 

(3) Divide the quotient of the last division in (2) by 2. If the remainder is 0, 
include. If the remainder is 1, delete. 

The algorithm is equivalent to inspecting the lowest nlon-zero bit in the binary 
representation of i. If this is the kth bit (coulnting from the right), the ntumber k 
is to be included or deleted. The (k + 1)st bit instructs inclusion or deletion: if 0, 
include; if 1, delete. 

Define A(i) as the binary representation of i, B(i) as +k if the number k is to 
be included, or -k if k is to be deleted on cycle i, and C(i) as the resultant combina- 
tion. Table 1 gives the first 16 values of i and these functions. 

Given combinations 1 through (2k 1 _ 1), all combinations of (k - 1) elemnents, 
the additional combinations which must be generated in order to produce all com- 
binations of k elements are reproductions of the first (2h 1 - 1) combinations, to 
each of which has been added the kth element, plus the combination of element k 
alone (in effect, a reproduction of the zero combination, plus element k). 

The algorithm produces these combinations by: (1) including k on the 21lst 
cycle, and not deleting it before the 2kth cycle, and (2) reproducing the B (i) 's in 
reverse order with opposite sign (B(2 k1 + c) = -B(2k-l - c)), thus on each 
cvele deleting from the combination that which we, 2c cycles before, included into 
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it, or including that which we, 2c cycles before, deleted from it, until the (2k-1)st 
combination, which corresponds to the empty set plus element k. 

Proof of (1) . Since the binary representation of 2k1 is a 1 bit followed by (k - 1) 
zeros, the kth element is included on cycle 2k-i . The kth element will remain until 
the binary number 11 followed by (k- 1) zeros appears. This will be on cycle 
number (2k + 2k-1) > (2 k- 1). Thus, all combinations from 2k-1 through (2k -1) 
will include the kth element. 

Procof of (2). Since (2k1 + c) + (2k1-c) = 2k, the binary representations of 
(2k-1 + c) and (2k 1 _ c) correspond in all their low-order zeros, and the low-order 
1, in which they also correspond. The bit above the 1 must differ in the two num- 
bers, due to the binary carry. Thus, B(2k-1 + c) = -B(2k-1 -c). 

To complete the proof by induction, we may note, by Table 1, that the algorithm 
has generated all combinations for k ? 4. 
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Generation of Permutations by Addition 
By John R. Howell 

1. Introduction. Suppose one wishes to generate the k! permutations of k dis- 
tinct marks. Representing these k marks by 0, 1, 2, ** , (k - 1) written side by 
side to form the "digits" of a base k integer, then the repeated addition of 1 will 
generate integers whose "digits" represent permutations of k marks. Many num- 
bers are also generated which are not permutations. D. H. Lehmer [2] states that 
this so-called addition method can be made more efficient by adding more than 1 
to each successive integer. 

2. Method. In this note, we show that the correct number greater than 1 to 
add to this integer is a multiple of (k - 1) radix k. 

LEMMA 1. The arithmetic difference radix k between an integer composed of mutu- 
ally unlike digits and another integer composed of a permutation of the same digits 
is a rznltiple of (k - 1). 

Considering the process of "casting out nines," it is obvious that the two in- 
tegers are congruent mod (k - 1). Hence, their difference is zero mod (k - 1). 

The method seems to have two advantages. First, one can generate all k! per- 
mutations in lexicographic order. Second, all permutations "between" two given 
permutations can be obtained. The process can be made to be cyclic if upon ob- 
taining (k - 1), * , 0 one takes the next permutation to be 0, 1, * , (k - 1). 

3. Example. Suppose we wish to generate the 4! permutations of 4 marks. 
Representing these 4 marks by 0, 1, 2 and 3, we add 3 radix 4 to 0123 to get 0132. 
Continuiing this process we get the 4! permutations desired. The array below shows 
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